If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-16=0
a = 1; b = 3; c = -16;
Δ = b2-4ac
Δ = 32-4·1·(-16)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{73}}{2*1}=\frac{-3-\sqrt{73}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{73}}{2*1}=\frac{-3+\sqrt{73}}{2} $
| 0.3(6-y)=0.4 | | 5635=40(p+35) | | 8x(40+9)=(8x)+(8x) | | 9^2x=81^(2x-3) | | 5635=40(p+35 | | 15x-7=4(3x-7) | | 10x+3=-11x+8 | | P^2-12p+3=4 | | 41/2s+20=47 | | –4v+4=–3-5v | | X2=2x-168 | | –4v+4=–3−5v | | 3(m-10)+6=0 | | 4=-2(x+6)+-4 | | 3x-5(2×+6)=4(2x+3)+18 | | 3.5=2^.1032t | | ((1/2)*x)+4=9 | | 3b^2-12b+2=0 | | -x+7x–7+2=29+2x+2 | | -6=-2(m+5) | | 190.5=1.5b^2b= | | 18=26+4x-38÷2 | | 9(x3)=18 | | -4x-2x=19 | | 3x−21+2x-13=180 | | 6x-13+10x+2=90 | | z-18/2=9 | | 9h+6-3=21 | | 3v-13=58 | | (3x+5)(5x-3)=15x²+10x+2 | | 4x−16+8x+4=180 | | n/4=5/4 |